
CS3485
Deep Learning for Computer Vision

Lec 3: The Multilayer Perceptron and Intro to Deep Learning

Announcements

■ Lab 1:
● Due on Thursday!
● Let me know if you haven’t found any partner yet. For this specific lab, I’ll allow for individual

submissions.

■ Quiz 1:
● This Thursday, make sure to check our schedule for next quizzes!

https://jeovafarias.github.io/Bowdoin-CS3485/schedule/

(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object
Detection

Fast Object
Detection

Intro to Image
Segmentation

Autoencoders Advanced GANs

Applications of Detection
and Segmentation

Image Generation
with GANs

The Attention
Mechanism

Transformers
and ChatGPT

Intro to
Computer Vision

Linear Classifiers and
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural
Networks

Optimization
in Deep Learning

Pytorch II – Images and
Regularization

Data Augmentation
and Deep CNNs

Inception Net and
what CNNs learn

Transfer Learning and
Residual Nets

Adversarial Examples
and Self-supervision

Intro to
MLOps

Image Generation
by Prompt

Misc.
Topics

Limitations of the Perceptron Model

■ Last time we saw that the Perceptron Model is useful to
model linear classifiers and the Perceptron Algorithm
is efficient at learning the parameters of the model.

■ They, however, have two main limitations in terms of its
applicability to most realistic datasets (like MNIST, on
the right):

a. The model can only perform binary classification, i.e.,
handle datasets with two classes,

b. The algorithm expects the data to be linearly separable.

■ Today we’ll improve the Perceptron Model, so it can
tackle both of the above issues.

■ This new model, the Multilayer Perceptron, will form
the basis for Deep Learning algorithms.

MNIST Dataset

MNIST Dataset Projected in 2D

Multiclass Problems

■ For the purpose of this course,
assume that the Perceptron
model our best solution* for
binary classification problems.

■ Now consider the problem of
classifying the points on the
right into 3 classes: squares,
triangles and circles?

■ How can we use only the
Perceptron to do it?

* In fact, there are many better algorithms for binary
classification using linear classifiers than the
perceptron, such as Support Vector Machines.

Multiclass Problems

■ We can use three classifiers!

1. Is this a square? 3. Is this a circle?2. Is this a triangle?

Multiclass Problems

■ We can use three classifiers!

1. Is this a square? 3. Is this a circle?2. Is this a triangle?

Multiclass perceptron

x1

x2

…

xD

1

∑

∑

∑

a

a

a

ŷ1

ŷ2

ŷ3

Prediction:

■ We have a perceptron (or neuron/unit) for each class, so we can represent them as:

Outputs of whether
the point is of class

“square”, “triangle” or
“circle”.

Multiclass perceptron

x1

x2

…

xD

∑

∑

∑

a

a

a

ŷ1

ŷ2

ŷ3

Prediction:1
W0,0 W1,0 W2,0

■ Now each weight set of each neuron will be an entry of a 3×(D+1) matrix of weights W.

Multiclass perceptron

x1

x2

…

xD

∑

∑

∑

a

a

a

ŷ1

ŷ2

ŷ3

Prediction:1
W0,1 W1,1 W2,1

■ Now each weight set of each neuron will be an entry of a 3×(D+1) matrix of weights W.

Multiclass perceptron

x1

x2

…

xD

1

∑

∑

∑

a

a

a

ŷ1

ŷ2

ŷ3

…

…

Num. Datapoints = n

D
im

en
si

on
 =

 D

1st datapoint, x(1)

Prediction:

■ Assuming we trained the three perceptrons, we can do a forward pass on them:

Multiclass perceptron

-2

3

…
1

1

∑

∑

∑

a

a

a

1

-1

-1

…

Num. Datapoints = n

D
im

en
si

on
 =

 D

1st datapoint, x(1)

Prediction:
1st class

…

-2

3

1

■ Assuming we trained the three perceptrons, we can do a forward pass on them:

…

Multiclass perceptron

10

23

…
-8

1

∑

∑

∑

a

a

a

-1

-1

1

…

D
im

en
si

on
 =

 D

2nd datapoint, x(2)

Prediction:
3rd class

…

10

23

-8

Num. Datapoints = n

■ Assuming we trained the three perceptrons, we can do a forward pass on them:

…

Multiclass perceptron

-9

-3

…
-1

1

∑

∑

∑

a

a

a

-1

1

1

…

D
im

en
si

on
 =

 D

Prediction:
??????

…

-9

-3

-1

Num. Datapoints = n

■ What do we do when there is ambiguity?

3rd datapoint, x(3)

…

Multiclass perceptron

-9

-3

…
-1

1

∑

∑

∑

a

a

a

-1

1

1

…

D
im

en
si

on
 =

 D

Prediction:
??????

…

-9

-3

-1

Num. Datapoints = n

Call these
pre-activations

■ What do we do when there is ambiguity?

3rd datapoint, x(3)

…

Multiclass perceptron

-9

-3

…
-1

1

∑

∑

∑

a

a

a

-1

1

1

…

D
im

en
si

on
 =

 D

Prediction:
??????

…

-9

-3

-1

Num. Datapoints = n

Call these
pre-activations

-3

3

1

A stronger/higher preference to
Class 2!

■ Via pre-activations (also called logits), we can check the class that the point “prefers” the most.

3rd datapoint, x(3)

…

■ Using pre-activations seems like a great way to avoid ambiguities, but they are set up is
not ideal to compare them to the real classes (as we’ll see later).

■ A better approach would be to transform them into a probability distribution (i.e. make
them all positive and summing to 1).

■ Call the pre-activations z = [z1, z2, ..., zK]. One way to turn z into a distribution is via the
softmax function:

● The exp() function turns the z’s into positive numbers.
● The normalization makes the resulting numbers sum to 1.

■ Example: z = [-3, 3, 1] → softmax(z) = [0.002, 0.878, 0.118]
■ In practice, we replace the perceptrons’ activation functions by a softmax operation.

The Softmax Function

Multiclass perceptron with softmax

-9

-3

…
-1

1

∑

∑

∑

0.002

0.871

0.118

…

D
im

en
si

on
 =

 D

Prediction:
(Probably) 2nd class

…

-9

-3

-1

Num. Datapoints = n

S
o

ft
m

ax

■ With softmax the softmax operation, we have now the following model:

3rd datapoint, x(3)

…

One-hot Enconding

■ If the input of the model is called x, its
output can be computed using the
multiclass perceptron formula:

■ We need to assess how good is the
output of our model (say, ŷ = [0.22,
87.89, 11.89]) for a point x in relation
to the true label of that point y (which
can be “circle”).

■ In Neural Networks, we use a one-hot
encoding of the true labels, so we can
compare them to our predictions.

■ If we have K classes, the one-hot
encoding of the labels will be vectors of K
dimensions, mostly made of zeros except
at the dimension corresponding to the
label value, where it is one.

■ Example: in our dataset, we may have

y1 = “Triangle”→ y1 = [1, 0, 0]
y2 = “Square” → y2 = [0, 0, 1]
y3 = “Circle” → y3 = [0, 1, 0]
…
yn = “Square” → yn = [0, 0, 1]

■ These encodings are also distributions
(made of positive numbers that sum to 1)!

True:

Multiclass perceptron with softmax

-9

-3

…

-1

1

∑

∑

∑

…

D
im

en
si

on
 =

 D

Prediction:

…

-9

-3

-1

Num. Datapoints = n

S
o

ft
m

ax

0

1

0

■ Say the third point’s true label is “circle”, which is encoded as [0, 1, 0]:

How good is our prediction
compared to the true label?

3rd datapoint, x(3)

…

0.002

0.871

0.118

True:

-9

-3

…

-1

1

∑

∑

∑

…

D
im

en
si

on
 =

 D

…

-9

-3

-1

Num. Datapoints = n

S
o

ft
m

ax

Loss Function

0

1

0

Multiclass perceptron with softmax

■ We can now compare our prediction to the true label using a loss function.

3rd datapoint, x(3)

…

Prediction:

0.002

0.871

0.118

Loss functions

■ We need a set of weights that achieves the best classification performance.
■ To that end, we can then use loss (or cost) functions l(ŷ, y), that compares how similar our

prediction ŷ is to the true one-hot encoded label y.
■ One of the most used loss functions* for multiclass problems is the cross-entropy loss:

■ If we have a labeled dataset of size n, we can consider the average loss L(θ) on it:

where θ represents all the parameters (weights, in the case of the perceptron or in Deep
Learning generally speaking) used to compute ŷ from x (more on it next time).

* There are many other losses used in Deep learning, and we’ll see them as we go.

True:

Multiclass perceptron with softmax

-9

-3

…

-1

1

∑

∑

∑

…

D
im

en
si

on
 =

 D

…

-9

-3

-1

Num. Datapoints = n

S
o

ft
m

ax

Loss Function

0

1

0

Update the weights
(Backpropagation)

■ We use the loss value to update the weights and improve the classifier (more next time).

3rd datapoint, x(3)

…

Prediction:

0.002

0.871

0.118

Exercise (In pairs)

■ How many weights are there to learn if we have input data in D dimensions and K
classes in the output of our multiclass perceptron?

■ Compute the cross-entropy loss for the following pairs true label/prediction (assume you
only have these three data points in your dataset):
● True labels:

● Predictions:

■ Repeat the above exercise using the Squared Error loss*:

*The dataset’s Average Loss L(θ) when using the squared error loss is the famous Mean Squared Error (MSE) loss.

■ Multiclass Perceptrons are still not performant when the
classes are non-linearly separable (as on the right).

■ Traditionally, this problem would be solved by handcrafting a
feature transformation that would make the data separable:

■ Example: a feature that easily separates cats and dogs is the
“ear pointiness”. We could represent cats and dogs by that.

■ In Deep Learning, we aim at learning these representations
from a labeled dataset.

■ To achieve that goal, we have to “evolve” our perceptrons.

Learning Representations

Linearly Separable

Non-Linearly Separable

Feature
engineering

Perceptron Evolution

x1

x2

…

xD

1

∑ a ŷ

■ The first perceptron had 1 neuron and only handled binary linearly separable problems.

Perceptron Evolution

x1

x2

…

xD

1

∑

∑

∑

a

a

a

ŷ1

ŷ2

ŷ3

■ Staking up some neurons, we were able to “solve” multiclass problems.

Perceptron Evolution

x1

x2

…

xD

1

h1

h2

h3

ŷ1

ŷ2

ŷ3

■ We could, however, consider the outputs of the neurons as a “transformed” input …

Perceptron Evolution

x1

x2

…

xD

1

h1

h2

h3

ŷ1

ŷ2

ŷ3

∑

∑

∑

■ … and the pass this new data into new sums, like what we did to x, …

Perceptron Evolution

x1

x2

…

xD

1

h1

h2

h3

ŷ1

ŷ2

ŷ3

∑

∑

∑

S
o

ft
m

ax

■ … and only then make the results of the sums go through the softmax function.

Perceptron Evolution

x1

x2

…

xD

1

h1

h2

hE

ŷ1

ŷ2

ŷ3

∑

∑

∑

S
o

ft
m

ax
…

1

■ We don’t need to have only 3 neurons in the middle, and we can also add a bias term.

This middle stage is called a hidden layer.

Here, the input x is “transformed into” a better
representation for our classification problem

Perceptron Evolution

x1

x2

…

xD

1

h1

h2

hE

ŷ1

ŷ2

ŷK

∑

∑

∑

S
o

ft
m

ax
…

1

… …

■ This same idea can be expanded for the cases when we have any number of classes.

Perceptron Evolution

x1

x2

…

xD

1

h1

h2

hE

ŷ1

ŷ2

ŷK

∑

∑

∑

S
o

ft
m

ax

…

1

… …

g1

g2

gF

1

…

■ Nobody will stop us from adding another hidden layer.

Perceptron Evolution

x1

x2

…

xD

1

h1

h2

hE

ŷ1

ŷ2

ŷK

∑

∑

∑

S
o

ft
m

ax

…

1
… …

g1

g2

gF

1

…

…

…

…

L hidden layers

■ Or in fact, as many hidden layers as we need.

 Output layer

 Hidden layer

Multilayer Perceptron

x1

x2

…

xD

1

h1

h2

hE

ŷ1

ŷ2

ŷK

…

1
…

g1

g2

gF

1

…

…

…

…

Output #1

Output #2

Output #K

Input Dim. #1

■ Et voila! Our last perceptron “stage”, the multilayer perceptron (MLP)! Input layer

Input Dim. #2

Input Dim. #D

■ The previous illustrations are useful for intuition, but we need to describe the MLP
mathematically, so we can find the best weights for them (more on that next time).

■ Let’s first recall the simple multiclass perceptron. Calling its weight matrix W0, we have:

■ When we added the first hidden layer, we changed the above formula to:

where a is the activation function applied to each of the outputs of the previous layer,
i.e., if W0x = [10, 20, 5], a(W0x) = [a(10), a(20), a(5)].

■ With L hidden layers now, we have the following expression MLP’s output:

Mathematically Speaking…

■ Two more suitable activations are the sigmoid
and the hyperbolic tangent (tanh), as they are
smooth versions of the the sign function:

■ The most widely used activation is the Rectified
Linear Unit (ReLU):

which, despite not smooth, works well in practice.

Other Activation Functions

■ The activation function we’ve
used is the sign(x) function:

■ It is, however, not great for
backpropagation, as we shall
see in next class, and it does not
perform well in practice.

1

-1

x

Hands-on Neural Networks

■ How good is this new network to solve non-linearly separable classification problems?
■ We’ll see this in practice using a function from Python’s sklearn library!
■ First, we create* our dataset, called “blobs”:

■ Then, we split* our dataset in training and test using the function “train_test_split ”
from sklearn:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X , y,
 test_size =0.4, random_state=2)

from sklearn.datasets import make_blobs
X, y = make_blobs(n_samples=400, centers=4,
 cluster_std =2, random_state=10)

* In both functions we set the random states to those values, so you can reproduce the exact same results as in here.

■ As it is usually a good practice, we
then visualize the training data:

■ Notice that, despite the classes being
somewhat well defined, this is not a
linearly separable dataset.

■ Therefore, we should use a multilayer
perceptron here.

Hands-on Neural Networks

import matplotlib.pyplot as plt
plt.scatter(X_train[: , 0],
 X_train[: , 1],
 c=y_train)
plt.title("Training Data")
plt.show()

Hands-on Neural Networks

■ Now we can train a Multilayer Perceptron Classifier using MLPClassifier:

■ In this example, we only have one hidden layer with 5 neurons*.

■ Not bad, as a random classification would have around 1/4 = 25% accuracy.

from sklearn.neural_network import MLPClassifier
clf = MLPClassifier(hidden_layer_sizes =5, random_state=10)
clf.fit(X_train, y_train) # This command trains the MLP on the training data

* Here are the functions we are using: predict_proba gives the softmax response to each dataset, predict gives the predicted
class for the listed points accord to predict_proba , and score outputs the overall accuracy of the classifier.

[[0.84 0.04 0.13 0.]
 [0.07 0.26 0.03 0.64]
 [0.22 0.22 0.26 0.29]]
[0 3 3]
[0 3 1]
0.7416666666666667

np.set_printoptions(suppress=True,
 precision =2)
print(clf.predict_proba(X_test[0:3, :]))
print(clf.predict(X_test[0:3, :]))
print(y_test[0:3])
print(clf.score(X_test , y_test))

Hands-on Neural Networks

■ Let’s see if we can improve this result by changing the number of neurons:

■ Now we have one hidden layer with 10 neurons. Let’s see how it performs:

■ Much better! Notice how the predictions’ probabilities are more “certain” of what class
these points should belong to!

from sklearn.neural_network import MLPClassifier
clf = MLPClassifier(hidden_layer_sizes =10, random_state=10)
clf.fit(X_train, y_train)

[[0.97 0. 0.03 0.]
 [0. 0.01 0. 0.99]
 [0.02 0.97 0.01 0.]]
[0 3 1]
[0 3 1]
0.9416666666666667

np.set_printoptions(suppress=True,
 precision =2)
print(clf.predict_proba(X_test[0:3, :]))
print(clf.predict(X_test[0:3, :]))
print(y_test[0:3])
print(clf.score(X_test , y_test))

Hands-on Neural Networks

■ Now, let’s more layers, instead of just more neurons in one layer:

■ Now we have two hidden layers with 20 and 10 neurons, resp. So, it performs like:

■ Almost perfect! And the softmax probabilities are almost sure about their predictions!
■ But, how long did “fit” take to run?

from sklearn.neural_network import MLPClassifier
clf = MLPClassifier(hidden_layer_sizes =(20, 10), random_state=10)
clf.fit(X_train, y_train)

[[1. 0. 0. 0.]
 [0. 0.01 0.01 0.99]
 [0. 0.99 0. 0.]]
[0 3 1]
[0 3 1]
0.9833333333333333

np.set_printoptions(suppress=True,
 precision =2)
print(clf.predict_proba(X_test[0:3, :]))
print(clf.predict(X_test[0:3, :]))
print(y_test[0:3])
print(clf.score(X_test , y_test))

Hands-on Neural Networks

■ We can also visualize the decision boundaries using the function:

def plot_decision_boundaries(X, y, model_class, **model_params):
 model = model_class(**model_params, random_state=10)
 model.fit(X, y)

 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

 h = .01 * np.mean([x_max - x_min, y_max - y_min])
 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
 Z = model.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)

 plt.contourf(xx, yy, Z, alpha=0.3)
 plt.scatter(X[:, 0], X[:, 1], c=y, alpha=0.8)
 plt.show()

■ Now we can visualize the training data with the decision boundary:

Hands-on Neural Networks

plot_decision_boundaries(X_train , y_train, MLPClassifier,
 hidden_layer_sizes =(20, 10))

■ How many weights we need to learn if or MLP has 3 layers with 10, 5 and 20 neurons,
respectively, and we have points of dimension 100, belonging to 3 different classes?

■ Run the Multilayer Perceptron on the following datasets

● Try different numbers of MLP layers and neurons.
● Compute the score of each classification.
● Visualize the decision boundaries in each case using plot_decision_boundaries .

from sklearn.datasets import make_moons
X, y = make_moons(n_samples=200, noise=0.05)

from sklearn.datasets import make_circles
X, y = make_circles(n_samples=200, noise=0.05)

Exercise (In pairs)

Click here to open code in Colab

https://colab.research.google.com/drive/1kjfO6WmnG5Qq0XvYM3RO0Tx-45rZyMxx?usp=sharing
https://colab.research.google.com/drive/1kjfO6WmnG5Qq0XvYM3RO0Tx-45rZyMxx?usp=sharing

