
CS3485 
Deep Learning for Computer Vision

Lec 3: The Multilayer Perceptron and Intro to Deep Learning



Announcements

■ Lab 1:
● Due on Thursday! 
● Let me know if you haven’t found any partner yet. For this specific lab, I’ll allow for individual 

submissions.

■ Quiz 1:
● This Thursday, make sure to check our schedule for next quizzes!

https://jeovafarias.github.io/Bowdoin-CS3485/schedule/
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Limitations of the Perceptron Model

■ Last time we saw that the Perceptron Model is useful to 
model linear classifiers and the Perceptron Algorithm 
is efficient at learning the parameters of the model.

■ They, however, have two main limitations in terms of its 
applicability to most realistic datasets (like MNIST, on 
the right):

a. The model can only perform binary classification, i.e., 
handle datasets with two classes,

b. The algorithm expects the data to be linearly separable.

■ Today we’ll improve the Perceptron Model, so it can 
tackle both of the above issues.

■ This new model, the Multilayer Perceptron, will form 
the basis for Deep Learning algorithms.

MNIST Dataset

MNIST Dataset Projected in 2D 



Multiclass Problems

■ For the purpose of this course, 
assume that the Perceptron 
model our best solution* for 
binary classification problems.

■ Now consider the problem of 
classifying the points on the 
right into 3 classes: squares, 
triangles and circles?

■ How can we use only the 
Perceptron to do it?

* In fact, there are many better algorithms for binary 
classification using linear classifiers than the 
perceptron, such as Support Vector Machines.



Multiclass Problems

■ We can use three classifiers!

1. Is this a square? 3. Is this a circle?2. Is this a triangle?



Multiclass Problems

■ We can use three classifiers!

1. Is this a square? 3. Is this a circle?2. Is this a triangle?
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■ We have a perceptron (or neuron/unit) for each class, so we can represent them as:

Outputs of whether 
the point is of class 

“square”, “triangle” or 
“circle”.  



Multiclass perceptron
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■ Now each weight set of each neuron will be an entry of a 3×(D+1) matrix of weights W. 



Multiclass perceptron
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■ Now each weight set of each neuron will be an entry of a 3×(D+1) matrix of weights W. 



Multiclass perceptron
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■ Assuming we trained the three perceptrons, we can do a forward pass on them:



Multiclass perceptron
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■ Assuming we trained the three perceptrons, we can do a forward pass on them:

…



Multiclass perceptron
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■ Assuming we trained the three perceptrons, we can do a forward pass on them:

…



Multiclass perceptron
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■ What do we do when there is ambiguity?

3rd datapoint, x(3)

…



Multiclass perceptron
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■ What do we do when there is ambiguity?

3rd datapoint, x(3)

…



Multiclass perceptron
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■ Via pre-activations (also called logits), we can check the class that the point “prefers” the most.

3rd datapoint, x(3)

…



■ Using pre-activations seems like a great way to avoid ambiguities, but they are set up is 
not ideal to compare them to the real classes (as we’ll see later).

■ A better approach would be to transform them into a probability distribution (i.e. make 
them all positive and summing to 1).

■ Call the pre-activations z = [z1, z2, ..., zK]. One way to turn z into a distribution is via the 
softmax function:

● The exp() function turns the z’s into positive numbers.
● The normalization makes the resulting numbers sum to 1.

■ Example: z = [-3, 3, 1] → softmax(z) = [0.002, 0.878, 0.118]
■ In practice, we replace the perceptrons’ activation functions by a softmax operation.

The Softmax Function



Multiclass perceptron with softmax
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■ With softmax the softmax operation, we have now the following model:

3rd datapoint, x(3)

…



One-hot Enconding

■ If the input of the model is called x, its 
output can be computed using the 
multiclass perceptron formula:

■ We need to assess how good is the 
output of our model (say, ŷ = [0.22, 
87.89, 11.89]) for a point x in relation 
to the true label of that point y (which 
can be “circle”).

■ In Neural Networks, we use a one-hot 
encoding of the true labels, so we can 
compare them to our predictions.

■ If we have K classes, the one-hot 
encoding of the labels will be vectors of K 
dimensions, mostly made of zeros except 
at the dimension corresponding to the 
label value, where it is one.

■ Example: in our dataset, we may have

y1 = “Triangle”→ y1 = [1, 0, 0]   
y2 = “Square” → y2 = [0, 0, 1]    
y3 = “Circle” → y3 = [0, 1, 0]    
…           
yn = “Square” → yn = [0, 0, 1]   

■ These encodings are also distributions 
(made of positive numbers that sum to 1)!



True:

Multiclass perceptron with softmax
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■ Say the third point’s true label is “circle”, which is encoded as [0, 1, 0]:

How good is our prediction 
compared to the true label?

3rd datapoint, x(3)

…
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Multiclass perceptron with softmax

■ We can now compare our prediction to the true label using a loss function.

3rd datapoint, x(3)

…

Prediction:

0.002

0.871
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Loss functions

■ We need a set of weights that achieves the best classification performance. 
■ To that end, we can then use loss (or cost) functions l(ŷ, y), that compares how similar our 

prediction ŷ is to the true one-hot encoded label y.
■ One of the most used loss functions* for multiclass problems is the cross-entropy loss:

■ If we have a labeled dataset of size n, we can consider the average loss L(θ) on it:

where θ represents all the parameters (weights, in the case of the perceptron or in Deep 
Learning generally speaking) used to compute ŷ from x (more on it next time).

* There are many other losses used in Deep learning, and we’ll see them as we go.



True:

Multiclass perceptron with softmax
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■ We use the loss value to update the weights and improve the classifier (more next time).
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…

Prediction:
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Exercise (In pairs)

■ How many weights are there to learn if we have input data in D dimensions and K 
classes in the output of our multiclass perceptron?

■ Compute the cross-entropy loss for the following pairs true label/prediction (assume you 
only have these three data points in your dataset):
● True labels:

● Predictions:

■ Repeat the above exercise using the Squared Error loss*:

*The dataset’s Average Loss L(θ) when using the squared error loss is the famous Mean Squared Error (MSE) loss.



■ Multiclass Perceptrons are still not performant when the 
classes are non-linearly separable (as on the right).

■ Traditionally, this problem would be solved by handcrafting a 
feature transformation that would make the data separable:

■ Example: a feature that easily separates cats and dogs is the 
“ear pointiness”. We could represent cats and dogs by that.

■ In Deep Learning, we aim at learning these representations 
from a labeled dataset.

■ To achieve that goal, we have to “evolve” our perceptrons.

Learning Representations

Linearly Separable

Non-Linearly Separable

Feature
engineering



Perceptron Evolution
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■ The first perceptron had 1 neuron and only handled binary linearly separable problems.



Perceptron Evolution
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■ Staking up some neurons, we were able to “solve” multiclass problems.



Perceptron Evolution
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■ We could, however, consider the outputs of the neurons as a “transformed” input …



Perceptron Evolution
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Perceptron Evolution
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■ … and only then make the results of the sums go through the softmax function. 



Perceptron Evolution
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■ We don’t need to have only 3 neurons in the middle, and we can also add a bias term.

This middle stage is called a hidden layer.

Here, the input x is “transformed into” a better 
representation for our classification problem



Perceptron Evolution
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■ This same idea can be expanded for the cases when we have any number of classes.



Perceptron Evolution
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■ Nobody will stop us from adding another hidden layer.



Perceptron Evolution
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■ Or in fact, as many hidden layers as we need.



        Output layer

        Hidden layer

Multilayer Perceptron

x1

x2

…

xD

1

h1

h2

hE

ŷ1

ŷ2

ŷK

…

1
…

g1

g2

gF

1

…

…

…

…

Output #1

Output #2

Output #K

Input Dim. #1

■ Et voila! Our last perceptron “stage”, the multilayer perceptron (MLP)!         Input layer

Input Dim. #2

Input Dim. #D



■ The previous illustrations are useful for intuition, but we need to describe the MLP 
mathematically, so we can find the best weights for them (more on that next time).

■ Let’s first recall the simple multiclass perceptron. Calling its weight matrix W0, we have:

■ When we added the first hidden layer, we changed the above formula to:

where a is the activation function applied to each of the outputs of the previous layer, 
i.e., if W0x = [10, 20, 5], a(W0x) = [a(10), a(20), a(5)].

■ With L hidden layers now, we have the following expression MLP’s output:

Mathematically Speaking…



■ Two more suitable activations are the sigmoid 
and the hyperbolic tangent (tanh), as they are 
smooth versions of the the sign function:

■ The most widely used activation is the Rectified 
Linear Unit (ReLU):

which, despite not smooth, works well in practice.

Other Activation Functions

■ The activation function we’ve 
used is the sign(x) function:

■ It is, however, not great for 
backpropagation, as we shall 
see in next class, and it does not 
perform well in practice.

1
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Hands-on Neural Networks

■ How good is this new network to solve non-linearly separable classification problems?
■ We’ll see this in practice using a function from Python’s sklearn library!
■ First, we create* our dataset, called “blobs”:

■ Then, we split* our dataset in training and test using the function “train_test_split ” 
from sklearn:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X , y, 
                                     test_size =0.4, random_state=2)

from sklearn.datasets import make_blobs
X, y = make_blobs(n_samples=400, centers=4,  
                  cluster_std =2, random_state=10)

* In both functions we set the random states to those values, so you can reproduce the exact same results as in here.



■ As it is usually a good practice, we 
then visualize the training data:

■ Notice that, despite the classes being 
somewhat well defined, this is not a 
linearly separable dataset. 

■ Therefore, we should use a multilayer 
perceptron here.

Hands-on Neural Networks

import matplotlib.pyplot as plt
plt.scatter(X_train[: , 0], 
            X_train[: , 1], 
            c=y_train)
plt.title("Training Data")
plt.show()



Hands-on Neural Networks

■ Now we can train a Multilayer Perceptron Classifier using MLPClassifier:

■ In this example, we only have one hidden layer with 5 neurons*.

■ Not bad, as a random classification would have around 1/4 = 25% accuracy.

from sklearn.neural_network import MLPClassifier
clf = MLPClassifier( hidden_layer_sizes =5, random_state=10)
clf.fit(X_train, y_train) # This command trains the MLP on the training data

* Here are the functions we are using: predict_proba  gives the softmax response to each dataset, predict  gives the predicted 
class for the listed points accord to predict_proba , and score outputs the overall accuracy of the classifier. 

[[0.84 0.04 0.13 0.  ]
 [0.07 0.26 0.03 0.64]
 [0.22 0.22 0.26 0.29]]
[0 3 3]
[0 3 1]
0.7416666666666667

np.set_printoptions( suppress=True, 
                    precision =2)
print(clf.predict_proba(X_test[ 0:3, :]))
print(clf.predict(X_test[ 0:3, :]))
print(y_test[0:3])
print(clf.score(X_test , y_test))



Hands-on Neural Networks

■ Let’s see if we can improve this result by changing the number of neurons:

■ Now we have one hidden layer with 10 neurons. Let’s see how it performs:

■ Much better! Notice how the predictions’ probabilities are more “certain” of what class 
these points should belong to!

from sklearn.neural_network import MLPClassifier
clf = MLPClassifier( hidden_layer_sizes =10, random_state=10)
clf.fit(X_train, y_train)

[[0.97 0.   0.03 0.  ]
 [0.   0.01 0.   0.99]
 [0.02 0.97 0.01 0.  ]]
[0 3 1]
[0 3 1]
0.9416666666666667

np.set_printoptions( suppress=True, 
                    precision =2)
print(clf.predict_proba(X_test[ 0:3, :]))
print(clf.predict(X_test[ 0:3, :]))
print(y_test[0:3])
print(clf.score(X_test , y_test))



Hands-on Neural Networks

■ Now, let’s more layers, instead of just more neurons in one layer:

■ Now we have two hidden layers with 20 and 10 neurons, resp. So, it performs like:

■ Almost perfect! And the softmax probabilities are almost sure about their predictions!
■ But, how long did “fit”  take to run?

from sklearn.neural_network import MLPClassifier
clf = MLPClassifier( hidden_layer_sizes =(20, 10), random_state=10)
clf.fit(X_train, y_train)

[[1.   0.   0.   0.  ]
 [0.   0.01 0.01 0.99]
 [0.   0.99 0.   0.  ]]
[0 3 1]
[0 3 1]
0.9833333333333333

np.set_printoptions( suppress=True, 
                    precision =2)
print(clf.predict_proba(X_test[ 0:3, :]))
print(clf.predict(X_test[ 0:3, :]))
print(y_test[0:3])
print(clf.score(X_test , y_test))



Hands-on Neural Networks

■ We can also visualize the decision boundaries using the function:

def plot_decision_boundaries(X, y, model_class, **model_params):
   model = model_class(**model_params, random_state=10)
   model.fit(X, y)

   x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
   y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

   h = .01 * np.mean([x_max - x_min, y_max - y_min])
   xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
   Z = model.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)

   plt.contourf(xx, yy, Z, alpha=0.3)
   plt.scatter(X[:, 0], X[:, 1], c=y, alpha=0.8)
   plt.show()



■ Now we can visualize the training data with the decision boundary:

Hands-on Neural Networks

plot_decision_boundaries(X_train , y_train, MLPClassifier, 
                         hidden_layer_sizes =(20, 10))



■ How many weights we need to learn if or MLP has 3 layers with 10, 5 and 20 neurons, 
respectively, and we have points of dimension 100, belonging to 3 different classes?

■ Run the Multilayer Perceptron on the following datasets

● Try different numbers of MLP layers and neurons.
● Compute the score of each classification.
● Visualize the decision boundaries in each case using plot_decision_boundaries .

from sklearn.datasets import make_moons
X, y = make_moons(n_samples=200, noise=0.05)

from sklearn.datasets import make_circles
X, y = make_circles( n_samples=200, noise=0.05)

Exercise (In pairs)

Click here to open code in Colab

https://colab.research.google.com/drive/1kjfO6WmnG5Qq0XvYM3RO0Tx-45rZyMxx?usp=sharing
https://colab.research.google.com/drive/1kjfO6WmnG5Qq0XvYM3RO0Tx-45rZyMxx?usp=sharing

